GASCLAM 2 Instrument User Manual V1.2 Register your instrument online to receive your extended Warranty. # Register your instrument online for extended warranty Thank you for purchasing your ION Science instrument. The standard warranty of your GasClam 2 can be extended to two years. To receive the warranty, you must register your instrument online within one month of purchase (terms and conditions apply). Visit www.ionscience.com/usa # Contents | Symbols | 7 | |---|----| | Recycling and Disposal | 7 | | Declaration of conformity | 8 | | Statements | 9 | | Responsibility for Correct Use | | | Warnings | | | Quality Assurance | | | Disposal | | | Legal Notice | | | Warranty | | | Service | 9 | | Introduction to GasClam 2 | 10 | | Package Contents | | | Parts Description | 11 | | How the GasClam 2 Works | 12 | | User Accessible Parts | 12 | | Planning Monitoring and Site Preparation | 13 | | Number of Units and Site Layout | | | Hazardous Areas | | | Borehole Headworks | 13 | | GasClam 2 Configuration and Setup | 14 | | Software Installation | | | Function | | | Power Supply Options | | | External Power Supply | | | Water Height | | | Remote Data Acquisition (Telemetry) | | | Battery Life and Sample Count | | | Alkaline Batteries | | | Ni-MH Rechargeable | 16 | | Li Long-Life | | | The Effects of Temperature and Humidity on Sample Count | | | Temperatures Below 0°C | | | The Effects of Water on a GasClam 2 | | | How the GasClam 2 Prevents Water Entering From Below | | | How the GasClam 2 Prevents Water Entering From Above | | | Optimising GasClam 2 Performance | | | Start Monitoring | 19 | | Changing Batteries | | | Connecting the GasClam 2 to a PC | | | Check Voltages and Settings | | | Installing the GasClam 2 in a Borehole | | | Turning the GasClam 2 On | 21 | | Leaving the Site | 22 | | Site Visits | 22 | | Regular Checks | | | Data Retrieval | | | Leaving the Site | 23 | | Calibration, Servicing and Storage | 23 | | Unit Calibration and Service | | | Storing the GasCalm when Not In Use | | | Filter Management | | | Inspecting and Replacing the Moisture Filter | | | User Serviceable Parts | | | User Spare Parts | 25 | | Fault Finding | 26 | | | | | Software | 26 | |---|----| | The Effects of Flooding on Data and the GasClam 2 | 26 | | Potential Problems when GasClam 2 used Below 0°C | | | Technical Specification | 27 | | General Specification | | | Dimensions | 28 | | Built-in Sensors | 28 | | Gas Sensor Specifications | 29 | | Cross sensitivities and Sensor Performance: | 29 | | Contact details | 32 | | Manual Log | 33 | # **Symbols** #### WARNING! USED TO INDICATE DANGER WARNINGS WHERE THERE IS A RISK OF INJURY OR DEATH. ### **WARNING! - DANGER OF ELECTRIC SHOCK** USED TO INDICATE DANGER WARNINGS WHERE THERE IS A RISK OF INJURY OR DEATH FROM ELECTRIC SHOCK. #### **CAUTION** USED TO INDICATE A CAUTION WHERE THERE IS A RISK OF DAMAGE TO EQUIPMENT. #### **PROHIBITED ACTION** USED TO INDICATE ACTIONS THAT ARE NOT PERMITTED; E.G. 'YOU MUST NEVER'. #### **INFORMATION** IMPORTANT INFORMATION OR USEFUL HINTS ABOUT USAGE. # **Recycling and Disposal** # **RECYCLING** RECYCLE ALL PACKAGING. # **WEEE REGULATIONS** ENSURE THAT WASTE ELECTRICAL EQUIPMENT IS DISPOSED OF CORRECTLY. # **Declaration of conformity** # **EU DECLARATION OF CONFORMITY** According to Decision No. 768/2008/ES of the European Parliament and of the Council # Landfill gas monitor type GasClam The manufacturer stated below declares that the characteristics of the product meet the required technical standards, directives and specification and that it conforms to the respective European Union harmonisation standards. Furthermore the manufacturer declares the product to be safe whilst adhering to the conditions for its correct installation, maintenance and use. This declaration of conformity is issued under the sole responsibility of the manufacturer. #### Manufacturer: Elok - Opava spol. s r.o., Sádek 17, 747 75, Velké Heraltice #### Notification of quality assurance: FTZÚ 02 ATEX Q 025 #### Product description: The Landfill gas monitor is used for monitoring gas released from bore holes in landfill sites. After recording the necessary number of samples the data is transfer to a PC using a serial cable, where it is then processed. #### Notified person: FTZÚ, AO 210, OSTRAVA-RADVANICE, IN - 00577880 € 1026 #### Certificate number (Registration number): FTZÚ 07 ATEX 0105X Including all Supplements. #### Type of protection: (Il 2G Ex db ib [ib] IIB T4 Gb #### Conformity assessment procedure: The product's conformity was assessed with respect to the following requirements: - ATEX Directive 2014/34/EU, EMC Directive 2014/30/EU, RoHS Directive 2011/65/EU. - it was compared with the submitted documentation - issued on fundamentals of declaration of conformity of the producer - it was tested according standards #### List of standards: EN 60079-0:2012 +A11:2013 EN 60079-1:2014 EN 60079-11:2012 EN 61000-4-5:2014 +A1:2018 #### List of technical regulations: 02600,NKO - Operating Instruction. Date and Place of Issue: Authorised representative: 27.09.2018 Sádek 17 Ing. Jiří Klei Velké Heraltice Ing. Jiří Klein © pok - Opava Sádek 17, 74 7 75 Velké Heraltice IČO:46576525, Dič:C246576525 Vei.: 553 663 930-3, Fax: 553 663 948-9 E Crea Created by: Malchárek Josef Approved by: Malchárek Josef Created on: 27.09.2018 Approved on: 27.09.2018 Doc. No. / Rev.: POS20180012/F0 State: Released Elok - Opava spol. s r.o. www.elok.cz Page 1 of 1 #### **Statements** # Responsibility for Correct Use ION Science Inc. accepts no responsibility for incorrect adjustments that cause harm or damage to persons or property. The users are responsible to respond appropriately to the readings and alarms given by GasClam 2. Use the equipment in accordance with this manual, and in compliance with local safety standards. Reduced performance of gas detection might not be obvious, so equipment must be inspected and maintained regularly. ION Science recommends: - you use a schedule of regular checks to ensure it performs within calibration limits, and that - you keep a record of calibration check data. # Warnings - 1. Read and understand this Manual fully before you install or operate the GasClam 2. - 2. For safety, the GasClam 2 must only be operated by qualified personnel. - 3. Substitution of components can result in unsafe conditions and will invalidate the warranty. - 4. Surface mount fuses must only be replaced by ION Science service centers. # **Quality Assurance** The GasClam 2 is manufactured in compliance with ISO9001:2015. That ensures that the equipment is: - designed and assembled reproducibly, from traceable components, - calibrated to the stated standards before it leaves our factory. # Disposal Dispose of GasClam 2 and its components in accordance with all local and national safety and environmental requirements. This includes the European WEEE (Waste Electrical and Electronic Equipment) directive. ION Science Inc. offers a take-back service. Please contact us for more information. #### **Legal Notice** While every attempt is made to ensure the accuracy of the information contained in this manual, ION Science accepts no liability for errors or omissions, or any consequences deriving from the use of information contained herein. It is provided "as is" and without any representation, term, condition or warranty of any kind, either expressed or implied. To the extent permitted by law, ION Science shall not be liable to any person or entity for any loss or damage which may arise from the use of this manual. We reserve the right at any time and without any notice to remove, amend or vary any of the content which appears herein. # Warranty To receive your 2 Year Warranty, you must register within one month of purchase (Terms and Conditions apply). You will then receive a confirmation email that your Warranty Period has been activated and processed. Full details, along with a copy of our Warranty Statement can be found by visiting: www.ionscience.com/usa #### Service ION Science recommends a twelve-month service replacement of the MiniPID sensor lamp. Contact ION Science or your local distributor for service options in your area. #### Introduction to GasClam 2 GasClam 2 is the world's first in-situ continuous borehole gas monitor and logging instrument. It is an invaluable tool for detecting and recording the concentration of a wide range of gases commonly required in monitoring applications, including Methane (CH₄), Carbon Dioxide (CO₂), Oxygen (O₂), Carbon Monoxide (CO), Hydrogen Sulphide (H₂S) and Volatile Organic Compounds (VOC). In addition to the selected gases, the GasClam 2 also records temperature, barometric pressure and borehole pressure. An optional borehole water level sensor can be fitted to measure fluctuations in the water table should this data be required. Samples can be taken at programmable intervals, providing an invaluable set of data. The GasClam 2's default setting is to take a sample every hour, giving it an operational life of approximately one month (using the rechargeable battery packs supplied) which can be extended up to 3 months (using optional proprietary long-life Lithium battery packs). The GasClam 2 can operate as either a stand-alone logger or real-time monitor linked to data acquisition systems (Telemetry) via an optional modem system or communication cable. Recorded data can be viewed using the GasClam 2 software or exported for analysis to a spreadsheet. The software is also used to setup the GasClam 2 for logging, including logging intervals, total number of samples, power supply and venting options. The GasClam 2 itself is built to the highest standards with the outer casing from stainless steel, is intrinsically safe and is certified for use in explosive environments in hazardous zone 1 and conforms to International Protection code IP68.
ION Science Inc. recommends that users perform regular bump tests in conjunction with an annual service and calibration, which is provided by the ION Science service department or an ION Science approved service center. In this manual a Warning identifies conditions and actions that pose a hazard to the User or the Unit. WARNING: Before using the GasClam 2, you must read this and the software manual paying particular attention to the sections covering optimization of GasClam 2 performance and the effects of water. WARNING: Do not connect or disconnect any cables in hazardous areas and do not use non-approved equipment in hazardous areas such as laptops, notebooks and mobile phones. WARNING: For reasons of intrinsic safety, batteries <u>MUST NOT</u> be changed within hazardous areas. Always ensure you are in a safe area before carrying out any type of work on your GasClam 2. WARNING: To maintain the Unit's certification and intrinsic safety use ONLY GasClam 2 approved batteries, external power supply junction boxes and spare parts. # **Package Contents** When first unpacking take a little time to check and examine the contents of the GasClam 2 package: - GasClam 2 - Power option (standard Charger, Power Supply and 2x Ni-MH rechargeable battery packs) - Instrument Case - Serial Communication Cable - Push-Button Cable - Allen key (no.5) for battery cover - Box spanner for Barbs - Allen key (no.4) for Vent Plug - Vent Plug Set - Spare Moisture Filters 2x - Snorkel Set - Spare Snorkel Filter - Calibration Certificate and Warranty The GasClam 2 is packed for transport with caps on the inlet, outlet and vent barbs, these <u>black caps</u> must be removed before the Unit is used. If it is intended to store the Unit for a longer period of time it is recommended to replace the caps on the barbs to stop moisture and dust ingression. #### How the GasClam 2 Works When logging is started the GasClam 2 instantly takes its first sample. A click is heard and then the pump starts which takes a sample of air from the borehole. First the pressure and temperature readings are taken. While the pump is on readings from gas flow sensors are taken. The pump then switches off and after a short pause readings from static gas sensors are taken. The whole process takes approximately 2 ½ minutes depending on sensor configuration. A set of readings is created and stored in non-volatile memory, the number of readings varies with the number of sensors used. This set of readings is one "Sample". The next sample can be taken after about ½ minute, hence the minimum interval between samples which is the "logging interval" is 3 minutes. The sampled gas is returned back into the borehole, however if required, a venting system can open a pathway from the borehole to the atmosphere at specified intervals and for specified durations. #### **User Accessible Parts** WARNING: To ensure the GasClam's intrinsic safety **DO NOT** dismantle or attempt any unauthorized servicing. The GasClam 2 has only two main User changeable parts: the Moisture Filter which is accessed by unscrewing the black Filter Cover tube (see section "Servicing") and the batteries which are accessed by removing the Battery Cover Plate (see section "Changing Batteries"). # **Planning Monitoring and Site Preparation** # Number of Units and Site Layout To achieve the required effectiveness of site monitoring the types of gases (see section "Specification") and additional parameters including water level that need be monitored should be defined and the GasClam 2 units need to be configured and calibrated accordingly prior to deployment in the field. Also the number of GasClam 2 units to be used and the location of the boreholes should be planned with consideration to access, ground water and possible flooding. #### **Hazardous Areas** It is important to define the extent of hazardous areas in accordance with national and local standards and how far these areas extend away from the boreholes where GasClam 2 will be deployed. #### **Borehole Headworks** The GasClam 2 is designed to fit in a 50 mm (2") borehole. The recommended Headworks are 8" Monitoring wells from Stuart Wells (http://wellservices.stuartgroup.ltd.uk/) or a similar type and should be installed following the diagram below: It is important to have the standpipe a maximum of 3 cm above the base of the Headworks, this will ensure the GasClam 2 will fit under the lid of the cover. The Headworks must be concentric to the standpipe for the GasClam 2 to be housed correctly. The standpipe must also be cut square to allow a good seal. If a protective cover is to be used make sure this ends below the top of the standpipe otherwise the GasClam 2 will not fit correctly. # **GasClam 2 Configuration and Setup** #### Software Installation The GasClam 2 software will run on: Windows XP SP 2, Windows 7, Windows 8.0, 8.1 and 10. The GasClam 2 software is on the CD (latest version can be provided by your service center), it includes an installation package with .Net Framework 4 (x86) (downloadable also from the Microsoft website) and a PDF manual. The software needs 45 MB of free space on the hard disk for installation. WARNING: All connections between the GasClam and a PC and all software settings must be performed outside the hazardous areas. #### **Function** The software is used to configure the GasClam 2 for logging, downloading logging data, performing analysis and exporting data for more detailed analysis in other programs such as spreadsheets. The software is also used to perform periodic "Bump Test" and "User Calibration". The main settings are the logging interval, variable logging interval programme, the number of samples (sample count), the outlet gas venting method and whether a borehole water level sensor is fitted. To help make data analysis easier the software can set each GasClam 2 a "friendly" name. If more than one GasClam 2 is being used on a monitoring site it is good practice to also label each GasClam 2 so that they are not put in the wrong boreholes. # GasClam - 000339 On - 0.2 29% On - 0.5 9% On - 0.5 9% Ublikery 2 #### **Power Supply Options** The GasClam 2 can use 4 approved power sources: - 2x 1.5 V Alkaline-Manganese Duracell MN1300 (Alk-Mn) - 2.6 V Nickle Metal Hydride rechargeable battery pack (Ni-MH) - 7.2 V Lithium non-rechargeable battery pack (Li) - 12 V External dc power supply (Ext) (logging interval 3 minutes to 24 hours) (logging interval 3 minutes to 24 hours) (logging interval 15 minutes to 24 hours) (logging interval 3 minutes to 24 hours) The GasClam 2 can operate as either a stand-alone logger or linked to a data acquisition system. The Ni-MH battery packs are rechargeable lasting up to a month with a 1-hour logging interval. The Li packs are non-rechargeable primary cells that can last up to 3 months with a 1-hour logging interval. The lifespan of individual types of battery packs depends on the logging interval, GasClam 2 sensor configuration, operating temperature and for rechargeable packs in particular, age and time since they were last charged. An external power supply is particularly useful if shorter logging intervals are required (sampling up to every 3 minutes) when a battery pack would not last a month and frequent site visits are not feasible. This option is also advantageous if remote monitoring is required either using the optional modem (which can also be powered externally) or external telemetry (see section "External Power"). Note: Moisture Filter life is dependent on logging interval. The GasClam 2 will automatically select the power source and adjust accordingly (see Software Manual). # **External Power Supply** WARNING: The external power supply and communications can only be designed and installed by persons suitably qualified and trained while adhering to national and local standards and regulations. A GasClam 2 can be powered by an external power supply using either the optional "External Power and Com Cable" which is 10m long or for longer distances using the optional "Junction Box" and a suitable cable. Either cable is then connected to the external power supply via barriers which must have the following parameters to maintain intrinsic safety. #### **External Power Supply Parameters** | Nominal Voltage Un | = 12V DC ±10% | |--------------------|-------------------| | Power Output Pn | ≧ 5W | | Maximum Voltage Uo | ≦ 15.6V | | Capacitance Co | ≧ 600pF + C cable | | Impedance Lo | ≧ 0.2mH + L cable | # Water Height The GasClam can measure the water level in the borehole using an optional pressure transducer. To enable the water level pressure transducer the "water level enabled" box in the Distance water height area needs to be ticked. The GasClam reports the level in meters below ground level (mbgl) however, in order to calculate this distance 3 parameters need to be entered; water density, water sensor length and the distance of the GasClam to the surface, see diagram below. Pure water has a density of 1000 kg/m3 at 39.2°F. Borehole pressure affects the water level reading but this is automatically corrected. # Remote Data Acquisition (Telemetry) #### Stand-alone with external power If the stand-alone solution requires monitoring with more frequent logging intervals which would be outside the capability of the battery packs it is also possible to power the GasClam 2 via the optional "Junction Box". The external power supply and barriers must have the parameters defined above to maintain intrinsic safety. #### Custom remote data with external power The optional "External Power and Com Cable" (as above) can also be used to access logging data or change GasClam 2 settings from outside the hazardous area. Cable length is 10m which is the maximum guaranteed distance for the GasClam 2 RS232 interface. # **Battery Life and Sample Count** The battery life and the number of samples taken will depend on the battery type, the operating temperature, humidity and the logging interval.
All batteries will have reduced maximum lifespans at low temperatures. | Power Supply | Voltage | Capacity | apacity Operating L | | lumber of Sam | ples for | Nominal Ba | | |----------------------|---------|----------|---------------------|-------|---------------|----------|------------|--------| | | [V] | [Ah] |]] [°⊏] | 5 min | 15 min | 1 hour | 15 min | 1 hour | | Alkaline Duracell 2x | 3.0 | 13.5 | 32 – 122 | 197 | 963 | 963 | 8 | 32 | | Ni-MH Rechargeable | 2.6 | 9.5 | 32 – 104 | 680 | 666 | 666 | 5 | 23 | | Li Long Life | 7.2 | 19.0 | 32 – 122 | na | 2937 | 2937 | 24 | 98 | The average number of samples for each logging interval is shown (1). This value can vary depending on operating temperature, the number and type of gas sensors fitted in the GasClam 2 and the state of the filters. These values are for temperatures at 68 °F with the maximum number of sensors and clean filters. The "Nominal Battery Life" (2) is a conservative calculation of the number of days a battery will last under "nominal" conditions (battery is fully charged at the start of logging, operating temperature is 68 °F, the filters are clean) and using all the sensors. This value is 80% of the average value for 15min and 1 hour logging intervals. Other factors such as relative humidity can also affect the battery lifespan (see below). #### **Alkaline Batteries** The GasClam 2 is fitted with Alkaline batteries for initial testing and checks. However, for normal field work it is recommended to use either the Ni-MH rechargeable or Li long-life battery packs. The Duracell batteries can be stored in the instrument case as a reserve and can be used when the rechargeable battery has not been charged and the GasClam 2 must be deployed immediately. Alkaline batteries have a long "shelf life" but do not use after the date shown on the battery. Short logging intervals will reduce the maximum number of samples taken. #### Ni-MH Rechargeable The Ni-MH rechargeable battery packs should be fully charged using the charger provided (see instructions) and used for logging as soon as possible. Rechargeable batteries do not have a long "shelf life" as they will self-discharge over time. This also means that battery life is not proportional with an increase in logging interval, e.g. if the logging interval is increased from 1 hour to 12 hours the nominal battery life will not increase 12 times to 276 days (9 months). The NiMH batteries self-discharge at a rate of 15% - 20% per month. To obtain the maximum working life from the Ni-MH battery packs it is recommended that they are always first fully discharged and then charged using the charger provided (see Charger instructions). Also Ni-MH battery packs should be charged at least once every 6 months even if they are not being used. #### Li Long-Life The Long-life battery pack will last up to 3 months at an hourly logging interval. Only the Li battery pack has a restriction on the minimum logging interval that can be used and that is 15 minutes. The Li battery pack has a built-in fuse to maintain intrinsic safety and if the GasClam 2 is switched on/off rapidly using the Push-button cable in rare cases this can cause the fuse to blow. If the GasClam 2 does not react with a Li battery pack first check the battery using a voltmeter. Adhere to the conditions of use and safety instructions enclosed with the Li battery packs. # The Effects of Temperature and Humidity on Sample Count To ensure that the gas sample is dry before measurement by the CH_4 and CO_2 sensors a Moisture Filter is fitted in the GasClam 2. Over time this will hydrate and its ability to remove moisture will decrease. If moisture is not successfully removed, concentration readings can be affected. The amount of samples that can be taken will depend on temperature and humidity. The table below shows how many samples can be taken at 90% Relative Humidity (RH) at different temperatures (90% RH is assumed to be worst case). | Temperature °F | 33.8°F | 41°F | 50°F | 59°F | 68°F | 77°F | 86°F | 95°F | 100°F | |-------------------|--------|------|------|------|------|------|------|------|-------| | Samples at 90% RH | 3455 | 2620 | 1850 | 1320 | 950 | 700 | 520 | 390 | 330 | Typically, temperatures in a borehole will not go below 37.4°F and will not exceed 59°F however, this will depend on installation. If the GasClam 2 is used above ground then temperatures can vary more widely. The Ni-MH rechargeable battery on the GasClam 2 lasts approximately 670 samples (hourly sampling). To ensure the GasClam 2 does not take more samples than the filters capacity use the table above to set the sample count (see Software "Setup"), e.g. if the borehole is at 86°F set the sample number to less than 520. It is unlikely that RH in a borehole will exceed 90% all the time and to help assess how to manage the filter after the first installation there is an indicator system. The indicators work differently below 86°F and above 86°F (see section "Servicing"). # Temperatures Below 0°C If the temperature drops below 32°F and there is high humidity the valves in the GasClam 2 may freeze and prevent correct sampling and a pump error will be flagged. This will not damage the GasClam 2; when temperature rises above 32°F it will function correctly (see section "Fault Finding"). Typically the GasClam 2 is installed in boreholes below the ground and the GasClam 2 will not go below 32°F due to ground heat. If the GasClam 2 is installed above the ground, insulation or a heater will be needed to prevent freezing. If you are unsure about your GasClam 2 installation contact your local supplier. # The Effects of Water on a GasClam 2 The GasClam 2 is designed to: - · measure gas concentrations, - measure borehole and atmospheric pressure, - allow a venting pathway between the borehole and atmosphere, - the GasClam 2 software enables a selection of venting options. To measure gas concentrations the gas must be dry and measurements of atmospheric pressure should not include the pressure of overlying water. As the GasClam 2 can be in a position liable to flooding from above (flooded Headworks) and below (borehole water level) it is necessary to: · carrying out simple preventive and remedial maintenance and • being aware of the limitations of data gathered under flood conditions. # How the GasClam 2 Prevents Water Entering From Below To prevent water entering the GasClam 2 from below a water proximity sensor is situated below the gas inlet. If water rises up the borehole and comes into contact with the proximity sensor the GasClam 2 will pause logging. When water level drops GasClam 2 will resume logging after 1 hour. To prevent water from reaching the gas inlet barb and flooding the GasClam 2, the Filter Cover creates an air pocket at the base of the GasClam 2 (Always check to see if the cover is not damaged or cracked as this could then let water in). The air pocket should stop water from reaching the gas inlet for at least 7 days when the GasClam 2 is completely submerged with 20 cm of water above its head. If the GasClam 2 is immersed for longer, the User must check to ensure water has not reached the inlet barb before restarting the GasClam 2. If the User suspects that water may have reached the gas inlet they must contact their local service center. NOTE: The water proximity sensor works on the principle of conductivity and when water comes into contact with the sensor it completes the circuit switching off the GasClam. If a non-conducting fluid, such as oil, is floating on top of the water in a borehole the water proximity sensor will not detect it and therefore it can be sucked into the GasClam. # How the GasClam 2 Prevents Water Entering From Above To prevent water reaching the vent pathway the Snorkel Set should always be attached to the Vent Barb. The open end tube should be supported so it is located at the top of the Headworks to reduce the chance of water ingress. In locations where the Headworks are likely to be flooded the Vent Barb must be replaced with the Vent Plug. The supplied box spanner is used to remove the Vent Barb and the supplied Alan key (no.4) used to insert the Vent Plug and washer. If the Vent Plug is inserted it should be configured in the software (see software "Setup"). Atmospheric pressure will not be recorded in this mode. # **Optimizing GasClam 2 Performance** Read the 'Cross sensitivities and sensor performance' section to understand how each gas is detected and the implication of environmental conditions on their detection. Understand the implication on sampling and bump testing if a 5% CO₂ sensor is installed (see section "Technical Specification"). Periodically (on a monthly basis) the GasClam 2 should be removed from the borehole if installed for long periods and checked (see section "Site Visit"). If conditions of 85% RH and 104°F have persisted for more than 10 days the H_2S , CO and O_2 sensors may need to be reconditioned (see section "Service"). ionscience.com/usa The GasClam 2 software (see Software Manual) offers a selection of venting options during logging # **Start Monitoring** # **Changing Batteries** WARNING: For reasons of intrinsic safety, batteries <u>MUST NOT</u> be changed within hazardous areas. Always ensure you are in a safe area before carrying out any type of work on your GasClam. WARNING: To maintain the Unit's certification and intrinsic safety use ONLY GasClam approved batteries. The battery compartment is accessed by loosening the four (no.5) Allen key bolts on the Battery Cover Plate – note that the bolts do not unscrew completely, they remain with the plate. To replace batteries follow the instructions below: - 1) First clamp the Battery Cover Plate so that the spring under the plate does not exert unequal force on the bolts ensuring that bolts loosen smoothly without forcing the thread. This can be done by clamping the plate with the thumb on the "GasClam 2" logo and the rest of the fingers under the head. -
2) Loosen the bolts first by applying force on the long end of the Allen key in a cross pattern (1,2,3,4). - 3) When the bolts are loose and while still clamping the Battery Cover Plate unscrew fully. - 4) To remove the batteries tilt the GasClam 2 until they slide out. - 5) Replace with only GasClam 2 approved batteries positive terminal facing <u>DOWN</u> into the GasClam 2. - 6) Check the integrity of the O-ring, if damaged it MUST be replaced. The O-ring should be checked every time the batteries are replaced. - 7) When the O-ring is resting on the battery compartment push the cover plate down evenly to ensure it travels down square. This will prevent damage to the O-ring. - The cover plate must sit flush with the head of the GasClam 2 otherwise the intrinsic safety of the unit will be compromised. - 8) Again clamp the plate with the thumb on the "GasClam 2" logo and the rest of the fingers under the head. - 9) First tighten the bolts by hand taking care that the bolts tighten smoothly without crossing the threads. - 10) When the bolts are finger tight use the Allen Key, alternate between the bolts in a cross pattern (1,2,3,4) applying moderate force on the short end of the Allen Key. - 11) Repeat this several times tightening the bolts in a cross pattern. - 12) When the bolts are tight repeat one more time applying moderate force on the long end of the Allen key. If this procedure is not followed carefully, damage to the O-ring may be caused compromising the intrinsic safety of the Unit. WARNING: Do not connect or disconnect any cables in hazardous areas and do not use non-approved equipment in hazardous areas such as laptops, notebooks and mobile phones. # Connecting the GasClam 2 to a PC Whilst the GasClam 2 is outside the hazardous area it can be programmed using a computer with the GasClam 2 software (see Software Manual). This is done using the Serial Communication Cable (supplied) and an RS232-USB converter (not supplied). - Remove the cap from the Com Port on the GasClam 2. Carefully connect the Serial Communication Cable ensuring that the two red dots are aligned, then push for a firm click. - 2. Connect the Serial Communication Cable to the RS232 converter and connect to the USB port of the computer (the RS232 convert will need to install drivers the first time it is connected to the computer). - 3. Start the GasClam 2 software either using the desktop icon or from the start menu. # **Check Voltages and Settings** The GasClam 2 will automatically detect the power source when it is first inserted and adjust accordingly (see software manual). After new batteries have been inserted check in the "Home" window that the appropriate power source has been selected by the GasClam 2 in the line "Power Source" and that "Power Status" meter is showing the correct voltage: Alkaline Duracell: New above 3 V. Ni-MH rechargeable: Fully recharged 2.5 – 2.7 V. Li Long-life: New battery pack 7.0 – 7.2 V. After ensuring that the battery type and voltage corresponds with the newly fitted batteries, proceed to set up the GasClam 2 for the monitoring application (and specific borehole) by clicking on the "Setup" button in the "Home" window. In the "Setup" window first check that the time and date are correct, that if a water level sensor is fitted it is selected, that the correct venting option is selected and then add a friendly name for the GasClam 2. After configuring the GasClam 2 then setup the logging intervals and sample counts required. When finished, write the setup to the GasClam 2. Check the settings in the "Home" window then run one test sample. Afterwards check that the status is "Sleeping". Switch off the software, disconnect the Serial Communication Cable and replace the Com Port Cap on the GasClam 2. Check that the black Barb Caps have been removed. The GasClam 2 is ready for deployment. # Installing the GasClam 2 in a Borehole Using the Lifting Handle carefully lower the GasClam 2 into the borehole and check that it sits in the standpipe smoothly with the Rubber Collar forming a good seal. Ensure that either a Snorkel Set or the Vent Plug is fitted. If a water level sensor is to be used first hook it and then connect it to the GasClam 2 outside the hazardous area. Take the GasClam 2 with the water level sensor to the borehole. First lower the sensor and then the GasClam 2 again ensuring a good fit with the Rubber Collar and the standpipe (see water level sensor instructions). # Turning the GasClam 2 On The only way to manually start the GasClam 2 when it has been deployed is to use the supplied **Push-Button Cable**. It connects to the Com Port on the head of the GasClam 2 in the same way as the Serial Communication Cable. It is intrinsically safe and is the **ONLY** piece of equipment that can be connected and disconnected from the Unit in a hazardous area. To start the GasClam 2, hold the button down for two seconds, the red LED will flash rapidly indicating the GasClam 2 has started logging and is currently sampling. After sampling has finished (approximately 3 minutes) the red LED flashes intermittently indicating that the GasClam 2 is Logging but between Samples. To stop the GasClam 2, press the button for two seconds, the red LED will stop flashing indicating that the GasClam 2 is "Sleeping". The Push-Button cable can also be used to perform occasional checks of the state of the GasClam 2 without the need to take the Unit out of the borehole. | No flashing | Sleeping / Off | |--------------------|----------------| | Rapid flash | Sampling | | Intermittent flash | Logging on | It is recommended that when a GasClam 2 is deployed and logging is first started to check that the LED starts to flash rapidly indicating that sampling has started and then to wait until the LED starts to flash intermittently indicating that the first sample has finished before disconnecting the Push-Button Cable. # Leaving the Site When leaving a borehole check that: - 1. the Snorkel Set is fitted correctly and above the flood level, - 2. the Com Port Cap is fitted to prevent dust entering the socket, - 3. the Headworks cover has been securely fitted. #### **Site Visits** WARNING: Do not connect or disconnect any cables in the hazardous area and do not use non-approved equipment in the hazardous area such as laptops, notebooks and mobile phones. WARNING: Before removing the GasClam from the field it must be run at least once (purged) in a non-hazardous atmosphere to clear any hazardous gasses from the unit. # **Regular Checks** It is recommended that at least once a month (or sooner depending on the power option and logging interval) the GasClam 2 is safely removed from the borehole and inspected outside the hazardous area in a dry location. When removed: - Inspect the GasClam 2 for any signs of wear and tear (especially the Filter Cover Tube). - Check for signs of water ingress prior to purging the unit (see section "Effects of Flooding"). - If there are no signs of water ingress, purge the unit. - Download and backup the logging data. - Check the data for any faults (see Software Manual) and if required take appropriate action. - Change batteries if required and check the integrity of the battery O-ring. - Check and change the Moisture Filter if required (see section "Service"). - Perform a Bump Test on the sensor channels if required (see Software Manual). NOTE: If conditions of 85% and higher RH and $+104^{\circ}$ F are expected to have persisted for more than 10 days the H₂S, CO and O₂ sensors may need to be reconditioned (see section "Specification"). #### Data Retrieval #### **Manual Download** Remove the GasClam 2 from the borehole using the Lifting Handle. Take the GasClam 2 outside the hazardous area. Under no circumstances take or connect a laptop to the GasClam 2 in a hazardous area! Place the GasClam 2 on a clean dry surface and wipe the head around the Com Port Cap if dirty. Connect the GasClam 2 to the PC using procedure previously described. Download the data using the software as described in the Software Manual. Sampling will cease when the GasClam 2 logging memory is full. Ensure memory is cleared for extended sampling once logging data has been checked, validated and backed-up. # Leaving the Site When leaving the site after a regular visit, check as before. If leaving the site after monitoring is complete ensure that the borehole is secured safely and not open. # Calibration, Servicing and Storage #### Unit Calibration and Service To ensure correct and accurate operation it is recommended that the GasClam 2 should be recalibrated and serviced every 12 months (or sooner depending on the logging interval and sensor configuration). The GasClam is ATEX certified for use in potentially explosive areas, therefore it must only be serviced and fully calibrated by an authorized GasClam 2 service center. Failure to do so will invalidate the warranty and may invalidate the certification. # Storing the GasCalm when Not In Use When the GasClam 2 is not in use it should be cleaned thoroughly, run for several cycles in clean preferably dry air, the batteries removed and placed in the instrument case. If it is intended to store the Unit for a longer period it is recommended to replace the caps on the barbs to stop moisture and dust ingression. When storing for a longer period (more than 3 month) the GasClam 2 should be fitted with 2x 1.5 V Alkaline-Manganese Duracell - MN1300 (Alk-Mn) batteries to ensure the functionality of the electronics # Filter Management Below 86°F the bottom indicator turns pink after approximately 40% of filter life and the top turns pink after 50% of filter life. For 59°F and 90% RH, the indicators will change in accordance to the table below. Above 86°F and high humidity the indicators on the Moisture Filter correspond to less samples. | Environmental conditions | Max number
of samples | Bottom indicator
turns pink after:
[samples] | Top
indicator
turns pink after:
[samples] | |--------------------------|--------------------------|--|---| | 59°F - 90% RH | 1320 | 490 | 730 | | 100.4°F - 98% RH | 300 | 240 | 360 | To assess if the filter needs to be replaced when the batteries are changed inspect the filter indicators. If both indicators are blue, the filter does not have to be replaced. The table below shows what actions to take depending on the state of the top and bottom indicators with respect to temperature and humidity. | Bottom
indicator | Top
indicator | Action at 59°F - 90% RH | Action at 100.4°F - 98% RH | |---------------------|------------------|--|---| | Blue | Blue | Don't replace | Don't replace | | Pink | Blue | Don't replace
(probably need to replace next time) | <u>Replace</u> | | Pink | Pink | Replace Check GasClam 2 for signs of moisture in the unit. Contact local service center if any signs of moisture within the GasClam 2 or tubing. | Replace Check GasClam 2 for signs of moisture in the unit. Contact local service centre if there are any signs of moisture within the GasClam 2 or tubing. If sampling in the same borehole again reduce the total number of samples taken so both indicators do not turn pink. | If both indicators turn pink after 1 battery life (670 samples) contact your local supplier for sampling advice. # Inspecting and Replacing the Moisture Filter WARNING: The GasClam must never be operated without the Moisture Filter. To inspect the Moisture Filter follow the instructions below: - 1. Place the GasClam 2 on a table with the head down. - 2. Carefully unscrew the black plastic Filter Cover using both hands placed on the knurled sections for better grip. - 3. Check the color of the indicators. - 4. Check the sealing O-rings, if damaged replace immediately. - 5. If the result is ok then screw the Filter Cover back on. To replace the Moisture Filter follow the instructions below: - 1) Place the GasClam 2 on a table with the head down. - 2) Carefully unscrew the black plastic Filter Cover. - 3) Using both hands, put the thumbs beneath the filter and push it up and out of the connecting barb and nozzle. - 4) Leaning the new filter to right and first connect the tube (Tygon) to the barb. - 5) Push the tube firmly down on the barb. - 6) Lean the filter back upright making sure the other inlet sits down on the nozzle. - 7) Push the filter completely down firmly from the top. - 8) Run the "Leak Test" from the software to check that the system is correctly sealed - 9) Check the sealing O-rings, if damaged replace immediately. - 10) If the result is ok then screw the Filter Cover back on. #### **User Serviceable Parts** #### Battery compartment O-ring: When changing the batteries always inspect the O-ring on the Battery Cover Plate, if there is any sign of damage replace. #### **Moisture Filter** The GasClam 2 must never be operated without a Moisture Filter! Follow the advice regarding Moisture Filter management and the instructions on how to change the filter. #### Filter Compartment O-rings: When inspecting the Moisture Filter check O-ring 1 and 2, if there are any signs of damage replace the corresponding O-ring immediately. #### **Snorkel** The snorkel should be checked regularly, if there is any damage replace immediately. #### **Rubber Collar** Inspect the collar regularly, if there is any signs of damage replace immediately. # **User Spare Parts** | Item | Description | |------|--| | 1 | Serial Communication Cable (2m) | | 2 | Push-Button Cable (1m) | | 3 | Rubber Collar | | 4 | Moisture Filter (18ml) | | 5 | Snorkel Set | | 6 | Snorkel Filter | | 7 | Vent Plug Set | | 8 | Barb (Vent, Inlet and Outlet) | | 9 | Battery Pack NiMH L1X2 (2.4V - Rechargeable) | | 10 | Battery Charger ECH 1.1 | | 11 | Battery Charger Power Supply | | 12 | Battery Pack Lithium Primary Li72-190F | | 13 | Moisture Filter Cover (Plastic) | | 14 | Communication Port Cap and Lanyard | | 15 | Water Level Sensor Cap and Lanyard | | 16 | O-Ring 1 and O-Ring Battery Cover (© 032 x 2 mm) | | 17 | O-Ring 2 (\$ 033 x 2 mm) | | 18 | Battery Cover Plate (Complete) | | 19 | Allen Key no.5 (Battery Cover) | | | | | 20 | Box Spanner no.7 (Vent Barb) | | 21 | Allen key no.4 (Vent Plug) | | 22 | ATEN – USB-RS232 Converter | # **Fault Finding** # Software The primary fault finding tool is the "Error Log" which can be checked after downloading a set of logging data and the "Error Box" in the software's home window (see Software Manual). # The Effects of Flooding on Data and the GasClam 2 When the GasClam 2 unit is not taking any samples it has a protection rating of IP68, however immersion will effect data and may require subsequent corrective action. These effects and requirements will differ whether immersed from above (flooded Headworks) or from below (rise in borehole water level) see table below: | Flooded Headworks | | Remedial Action | Preventive Maintenance | |-------------------------|---|---|---| | Effects on data | Should Vent breather be submerged: Atmospheric pressure readings will be incorrect. Scheduled venting will be ineffective. | To replace lost atmospheric data use borehole pressure as an approximate replacement or use data from another source. | If the chamber is known to flood, or is already full of water: Choose another chamber. Or replace the Snorkel with a Vent Plug. | | Effects on
GasClam 2 | If submerged for an extended period the vent pipe may become flooded. The vent breather may become clogged by dirty water. | When the GasClam 2 is visited check data and call the service center if atmospheric pressure looks strange, they will advise. | If chamber is liable to flooding:Replace Snorkel Filter each visit.Position the Snorkel at a higher location. | | Flooded Borehole | | Remedial Action | Preventive Maintenance | | Effects on data | Should water reach the base of the Unit the inflow and outflow valves will close, no samples will be taken: | Data points for the set logging interval will be marked when samples have not been taken. | If borehole water level is known to be high or is already full of water: • Choose another chamber. | | | Borehole pressure readings will be incorrect. Gas concentration readings will be incorrect. | | Or extend the borehole above ground level. | |-------------------------|--|------|---| | Effects on
GasClam 2 | Should water reach the base of the GasClam 2 the water proximity (flooding) sensor will react and the inflow and outflow valves will close and no samples will be taken. A flooding error will be flagged up in the software. | None | Every time a GasClam 2 is removed from a borehole the inlet barb should be checked to see if a water droplet is on it. If so dry with a cloth. If there is any chance that water may have entered the inlet contact your local service center and DO NOT start or purge the GasClam 2. | # Potential Problems when GasClam 2 used Below 32°F If the temperature of the body of the GasClam 2 drops below 32°F and there is high humidity the valves inside may freeze and prevent correct sampling. This will not damage the GasClam 2 and when temperatures rise above 32°F it will function correctly. Another indication that the valves have frozen is that the O_2 sensor will go off scale either positively or negatively and the atmospheric pressure reading will also dramatically increase. The graph illustrates a cycle between -10 and 10 °C at 98% RH. When the temperature reaches -5°C O_2 goes off scale positively and atmospheric pressure increases by 20 mBar. When temperature rises the valve thaws and O_2 concentrations are correct. # **Technical Specification** # **General Specification** | GasClam 2 | V8 | |----------------------|---| | Material | Outer case and frame: High Quality Stainless Steel. Filter Cover: PP plastic | | Weight | 7.5 kg (16.8 lb) | | Dimensions | Overall length 90 cm, head \approx 11 cm | | Ingress Protection | IP 68 (continuous submersion, 20 cm above the GasClam 2 head for 7 days) | | Working Environment | 0 to +40 °C (32 to 104 °F) RH up to 95% | | Storage Environment | +41 to +77 °F dry conditions | | Power Supply Options | 2x 1.5 V Alkaline-Manganese Duracell - MN1300 (
Alk-Mn) – LR20 2.6 V Nickle Metal Hydride rechargeable battery pack (Ni-MH) – L1X2 7.2 V Lithium primary battery pack (Li) – Li72-190F 12 V External dc power supply (Ext) – 12V dc ± 10% max 660 mA | | Power Consumption | Sampling max 300 mA @ 12V
Sleep 60μA @ 12V | | Logging Interval | 3 minutes to 24 hours (Lithium battery packs 15 minutes to 24 hours) | | Internal Memory | Maximum 30,000 date/time stamped sample set, depending on configuration If errors are recorded maximum memory is reduced to 15,000 sample sets | | Internal Memory Mode | Sampling will stop when the memory is full. | | Sensors 5x gas sensors optional), 2x pressure, 1x temperature (built-in), water level (optional) Communication RS232 – 115200 baud Configuration and Setup GasClam 2 Software Approvals CE, EMC ATEX -4 "F to +122 "F Alkaline batteries -14 "F to +104 "F NI-MH rechargeable battery pack -4 "F to +122 "F Li Long-life battery pack -4 "F to +122 "F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 "F to +122 "F Alkaline batteries -14 "F to +104 "F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEx FTZU 09.0026 CSA C US (Pending) -4 "F to +122 "F Alkaline batteries -14 "F to +104 "F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 Patent European and Worldwide Patent granted | Date and Time | Internal clock | |--|-------------------------|---| | Approvals CE, EMC ATEX -4 °F to +122 °F Alkaline batteries -14 °F to + 104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEX FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number | Sensors | 5x gas sensors optional), 2x pressure, 1x temperature (built-in), water level (optional) | | Approvals CE, EMC ATEX -4 °F to +122 °F Alkaline batteries -14 °F to + 104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 °F to +122 °F Alkaline batteries -14 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEX FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection CSA C US (Pending) -4 °F to +104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class 1, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Communication | RS232 – 115200 baud | | ATEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F Li Long-life battery pack -4 °F to +122 °F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEX FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Configuration and Setup | GasClam 2 Software | | ATEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F Li Long-life battery pack -4 °F to +122 °F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEX FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | | | | -14 °F to + 104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F Li Long-life battery pack -4 °F to +122 °F External Protection II 2G Ex d ib [ib] IIB T4 Gb Certificate number FTZU 07 ATEX 0105 X IECEX -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEx FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to +104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Approvals | CE, EMC | | Certificate number FTZU 07 ATEX 0105 X 1ECEX -4 °F to +122 °F Alkaline batteries -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEX FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | ATEX | -14 °F to + 104 °F Ni-MH rechargeable battery pack -4 °F to +122 °F Li Long-life battery pack | | IECEx -4 °F to +122 °F Alkaline batteries -14 °F to + 104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEx FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14 °F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Protection | II 2G Ex d ib [ib] IIB T4 Gb | | -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Ex d ib [ib] IIB T4 Gb Certificate Number IECEx FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Certificate number | FTZU 07 ATEX 0105 X | | Certificate Number IECEx FTZU 09.0026 CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | IECEx | | | CSA C US (Pending) -4 °F to +122 °F Alkaline batteries -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Protection | Ex d ib [ib] IIB T4 Gb | | -14°F to + 104 °F Ni-MH rechargeable battery pack Protection Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 Certificate Number 2320892 | Certificate Number | IECEx FTZU 09.0026 | | Certificate Number 2320892 | CSA C US (Pending) | | | | Protection | Class 1, Zone 1, Ex d ib IIB, T4 Class I, Zone I, AEx d ib IIB, T4 | | Patent European and Worldwide Patent granted | Certificate Number | 2320892 | | | Patent | European and Worldwide Patent granted | # **Dimensions** The main dimensions of the GasClam 2 are show below (mm): # **Built-in Sensors** | Sensor | Туре | Range | Resolution | |---------------------|---------------|------------------------------|-------------| | Barometric Pressure | Piezoelectric | 800 - 1250 mBar | 1 mBar | | Borehole Pressure | Piezoelectric | 800 - 1250 mBar | 1 mBar | | Temperature | Internal Chip | -20 to +50 °C (-4 to 122 °F) | 0.1°C (1°F) | Water depth (optional) Piezoelectric 0 - 27 m 0.01 m # **Gas Sensor Specifications** | Position | Sensor | Туре | Range | Resolution | Accuracy | |----------|------------------|-------------|--------------|---------------------------------------|---| | 5 | CO ₂ | Infrared | 0 - 100 % | 1% above 50%
0.5% below 50% | ± 2% FSD | | 5 | CO ₂ | Infrared | 0 - 5% | 0.05% above 2.5%
0.025% below 2.5% | ± 2% FSD | | 4 | CH ₄ | Infrared | 0 - 100 % | 1% above 50%
0.5% below 50% | ± 2% FSD | | 4 | CH ₄ | Infrared | 0 - 5% | 0.05% above 2.5%
0.025% below 2.5% | ± 2% FSD | | 3 | O ₂ | Electrochem | 0 - 25 % | 0.10% | ± 5% of reading
± 1 digit | | 2 | со | Electrochem | 0 - 2000 ppm | 1 ppm | <± 3ppm at 0
± 5% at 250 ppm
± 10% full scale | | 2 | H ₂ S | Electrochem | 0 - 100 ppm | 1 ppm | <± 1 ppm at 0
± 2.5% at 50 ppm | | 2 | Dual H2S/CO | | | | | | | со | Electrochem | 0 - 500 ppm | 1 ppm | <± 3ppm at 0
± 3% at 250 ppm | | | H ₂ S | Electrochem | 0 - 200 ppm | 1 ppm | <± 1 ppm at 0
± 2% at 100 ppm | | 1 | voc | PID | 0 - 4000 ppm | 1 ppm | ± 5% of reading
± 1 digit | NOTE: Specifications obtained under laboratory conditions of gas flow, temperature and humidity. Field performance is dependent on the correct installation procedures being followed, environmental conditions, frequent sensor cleaning and
regular calibration. Some of the sensors have cross sensitivity, for more information contact your local supplier. Details are subject to change without notice. ## Cross sensitivities and Sensor Performance: #### 100% Carbon Dioxide (CO₂) Carbon Dioxide is measured using an infrared sensor tuned to C=O. There are no other gasses commonly found in the subsurface that absorb infrared radiation at this wavelength, so the reading will not typically suffer from cross sensitivity. # 5% Carbon Dioxide (CO₂) When sampling concentrations up to 5% the sensor will read 90% of the real value after one sample (typically this will be within error of the sensor). For example, if you are sampling every hour and the real concentration changes from 0% - 2.5% in 1 hour (which is unlikely) the senor will read approximately 2.25%. In reality if low concentrations are present they will change much more gradually i.e.: | • | Sample 1 | Real concentration 0.0 | Measured 0.000 | |---|----------|------------------------|-------------------------------| | • | Sample 2 | Real concentration 0.1 | Measured 0.090 (within error) | | • | Sample 3 | Real concentration 0.3 | Measured 0.279 (within error) | | • | Sample 4 | Real concentration 0.8 | Measured 0.750 (within error) | When concentration decreases the reading will also be 90% of the real value after 1 sample. Below are examples when $4.7\% \text{ CO}_2$ has been sampled and how the sensor/filter clears down in air. | • | Sample 1 | 4.701 | 4.738 | 4.671 | |---|----------|-------|-------|-------| | • | Sample 2 | 0.326 | 0.29 | 0.468 | | • | Sample 3 | 0.071 | 0.037 | 0.042 | # Methane (CH₄) Methane is measured using an infrared detector tuned to C-H bonds. The sensor is calibrated using certified methane calibration gas and will give accurate readings providing no other C-H compounds are present. If additional hydrocarbons are present they will contribute to the reading. # Oxygen (O₂) The oxygen sensor is a Galvanic sensor and very specific. It has a little cross sensitivity with CO_2 , 5 % CO_2 only causes a 0.1% change in reading. Humidity has a small effect on output, between 0 % to 95% RH the % O_2 change is < 0.7 %. The sensor can work between 5 - 95 % RH continuously and 0 - 99% short term. # Single Carbon Monoxide (CO) The Single CO sensor has a filter to reduce the cross sensitivity with H₂S, NO₂, NO and SO₂, the following are the filter capacities for the given gases: ``` • H₂S 250,000 ppm - hours ``` • NO₂ 600,000 ppm - hours • NO 20,000 ppm - hours • SO₂ 300,000 ppm - hours ``` 50 ppm NO will read < 5 ppm 400 \text{ ppm H}_2 \text{ @ } 68^\circ\text{F will read} < 60 \text{ ppm} 400 \text{ ppm C}_2\text{H}_2 \text{ will read} < 25 ``` # Single Hydrogen Sulphide (H₂S) The cross sensitivities with these gases are: - 5 ppm NO₂ will read approximately -1 ppm on the H₂S Channel - 50 ppm NO will read < 5 ppm on the H₂S Channel - 20 ppm SO₂ will read < 4 ppm on the H₂S channel - 400 ppm CO will read < 4 ppm on the H₂S channel - 10 ppm Cl₂ will read < -25 ppm on the H₂S channel # Dual CO / H₂S Sensor The CO and H_2S sensors are electrochemical sensors and suffer from cross sensitivity to other gases that may be found in the subsurface. The carbon monoxide sensor suffers in particular from the cross sensitivity with H_2S , H_2 and NO. The cross sensitivities with these gases are: - 15 ppm H₂S will read < 6 ppm on the CO channel - 35 ppm NO will read < 0.1 ppm on the CO channel - 100 ppm H₂ will read approx. 20 ppm on the CO channel The hydrogen sulphide sensor is especially cross sensitive to the following: - 5 ppm NO₂ will read approximately -1 ppm on the H₂S Channel - 35 ppm NO will read < 1 ppm on the H₂S Channel - 5 ppm SO₂ will read < 1 ppm on the H₂S channel - 300 ppm CO will read < 6 ppm on the H₂S channel If the sensors have been exposed to gases they are cross sensitive for long periods it may take some time for the sensors to recover. The sensors can be checked after exposure to these gases by setting the GasClam 2 to sample every 5 minutes in clean air and the concentrations should return to zero and stabilize. If you suspect a cross sensitivity problem please contact your supplier for further advice. # Additional CO / H₂S sensor performance information If the GasClam 2 is located in a zero oxygen environment for longer than 24 hours the CO and H_2S sensor performance may be hindered. To return the channels to optimal performance the sensor needs to be left exposed to an oxygenated environment for the same length of time as it was deprived of oxygen for. Above 85% RH and 104°F a maximum continuous exposure of 10 days is recommended. Where such exposure occurs the sensor will recover normal electrolyte volumes when allowed to rest at lower % RH and temperature for several days. If very accurate CO or H₂S measurements are required it is recommended that a single CO or H₂S sensor is used. #### Volatile Organic Compounds (VOC) The VOC sensor is a mini photoionization detector (PID) and is sensitive to any VOCs that have an ionization potential less than 10.6 eV. The sensitivity of the sensor depends on the VOC present. The sensor is calibrated to isobutylene and its response to other VOCs can be calculated using that compounds response factor. A response factor is a number, which relates the PID response to a particular VOC, to the PID response from the calibration gas (normally isobutylene). If the response of a PID to a particular VOC is eight times smaller than it is for the same concentration of isobutylene, then the response factor would be 8. Similarly, if the response factor for a particular VOC is 0.5, the response is twice that for isobutylene at the same concentration. Concentrations greater than 4% CH₄ and CO₂ will attenuate the response of the PID sensor. Some VOCs after ionization may stick to the PID lamp reducing the amount of ultraviolet light available for future measurements. Before each PID measurement is made the lamp is turned on for 30s to burn the residual VOCs off. However, some VOCs may be more persistent and not completely removed, if this happens the PID response will decrease. To recondition the lamp, set the GasClam 2 to sample every 3 minutes and run for 1 hour in clean air, then perform a bump test. If the sensor has not completely recovered try reconditioning for longer. If this does not work contact your local service center. #### **Contact details** #### ION Science Ltd - UK/Head Office Tel: +44 (0)1763 208 503 Web: www.ionscience.com | Email: info@ionscience.com # ISM ION Science Messtechnik – Germany Office Tel: +49 (0) 2104 1448-0 Web: https://www.ism-d.de/en/ | Email: sales@ism-d.de #### **ION Science India - India Office** Tel: +914048536129 Web: www.ionscience.com/in | Email: kschari@ionscience.com #### **ION Science Inc - USA Office** Tel: +1 877 864 7710 Web: https://ionscience.com/usa/ | Email: info@ionscienceusa.com # **ION Science Italy - Italy Office** Tel: +39 051 0561850 Web: www.ionscience.com/it | Email: info@ionscience.it #### **ION Science China - China Office** Tel: +86 21 52545988 Web: www.ionscience.com/cn | Email: info@ionscience.cn # **Manual Log** | Manual version | Amendment | Issue Date | Instrument
Firmware | PC Software | |----------------|---|------------|------------------------|-------------| | V1.0 | | | | | | V1.1 | Quality Assurance updated p5, Water Height section added (2.4) p12, IECEx amended p25, Gas Sensor Specification Table (7.4) updated | 02/07/19 | | | | V1.1R | New manual design | 24/03/2020 | | | | V1.2 | Declaration of conformity update | 31/12/2020 | | | **Disclaimer**: Information in this [manual, document...] is subject to change without notice and does not represent a commitment on the part of ION Science. No claims, promises or guarantees are made about the accuracy, completeness, or adequacy of the information contained herein.